Расчет сопротивления для светодиода

загрузка...

Онлайн программа для расчета резистора при подключении светодиодов

Светодиод – нелинейный полупроводниковый прибор, которому для правильной и надежной работы необходим стабильный ток. Перегрузки по току могут вывести светодиод из строя. Самый простой вариант схемы питания в таком случае – ограничительный резистор, включенный последовательно. Расчет номинального сопротивления  и мощности резистора для светодиода не очень сложная задача, если правильно понимать физику процесса. Рассмотрим общие принципы такого расчета, а затем разберем несколько конкретных примеров из практики.

Теория

В общем случае схема выглядит так.

Image000

Рисунок 1

Между контактами «+» и «-» прикладывается напряжение. Обозначим его буквой U. Ток через резистор и светодиод будет протекать одинаковый, т.к. соединение последовательное. Согласно закону Ома получаем:

Image007

где R – сопротивление резистора;

rLED– сопротивление светодиода (дифференциальное).

Отсюда выражаем формулу, по которой можно произвести расчет сопротивления резистора R при заданном токе I:

Image008

Разберемся что такое дифференциальное сопротивление светодиода rLED. Для этого нам потребуется его вольтамперная характеристика (ВАХ).

Image001

Рисунок 2

Как видно из графиков ВАХ светодиодов – нелинейна. Говоря простым языком, его сопротивление постоянному току r=U/I есть переменная величина, которая уменьшается с ростом напряжения. Поэтому вводится понятие дифференциального сопротивления rLED=dU/dI, которое характеризует сопротивление диода в отдельно взятой точке кривой ВАХ.

Чтобы произвести расчет резистора для светодиода, определяем по графику прямое напряжение на светодиоде ULED при заданном токе I. Затем подставляем получившееся значение в формулу (2) и получаем

Image002

Еще один способ решения задачи – графический.

Допустим необходимо рассчитать сопротивление резистора для обеспечения светодиоду рабочего тока величиной 100 мА при напряжении источника питания – 5 вольт.

Для этого сначала на графике ВАХ светодиода отмечаем точку соответствующую току 100 мА (см. рисунок 3), затем проводим через эту точку и точку соответствующую 5 вольтам на оси абсцисс нагрузочную прямую до пересечения с осью ординат. Определяем значение тока, соответствующее этому пересечению (в нашем случае 250 мА) и по закону Ома производим расчет сопротивления резистора R= U / Iкз= 5 В / 0,25 А =20 Ом. Перед расчетом не забываем осуществлять перевод единиц измерения к надлежащему виду.

Image003

Рисунок 3

Следующим шагом будет определение мощности рассеиваемой на резисторе. Формула должна быть знакома всем из школьной физики (как и закон Ома):

P=I2×R.          (4)

Практика

Рассмотрим несколько конкретный пример расчета.

Исходные данные: напряжение питания 12В, белый светодиод XPE (CREE) требуется включить на номинальный ток 350 мА согласно схеме, представленной на рисунке 1.

Находим в data sheet значение прямого падения напряжения при токе 350 мА (рисунок 4).

Image004

Рисунок 4

Типовое значение по таблице — 3,2 вольта. Максимальное значение может достигать 3,9 вольт. То есть в результате производственного процесса может получиться как светодиод с прямым напряжением 3,2 В так и 3,9 В (или любым другим промежуточным значением), но вероятность получения 3,2 вольт наиболее высока (если хотите – это «математическое ожидание» этой величины). По этой причине в расчет обычно берется типовое значение.

Используя формулу (3) и калькулятор получаем:

R=(12-3,2)/0,35»25,1 Ом.

Ближайшее значение из ряда Е24 – 24 Ом. Значение тока при этом сопротивлении получится 367 мА, что на 5% превышает требуемое значение. Если учесть еще и допуск на номинал резистора, который для ряда Е24 также 5%, то в худшем случае получается вообще 386 мА. Если такое отклонение не допустимо, то можно добавить в цепь последовательно еще один резистор номиналом 1 Ом. Все эти действия рекомендуется сопровождать реальными измерениями сопротивлений резисторов и получающихся токов, иначе ни о какой точности не может идти и речи. Резистор 24 Ом может иметь погрешность в сторону увеличения до 25,2 Ом, добавив 1 Ом, получим 26, 2 и «перекос» силы тока через светодиод в противоположную сторону.

Предположим, что нам не нужна высокая точность задания тока и резистор 24 Ом нас устраивает.

Определим мощность, которая будет рассеиваться на резисторе по формуле (4):

P=0,3672×24»3,2 Вт.

Номинальная мощность рассеяния резистора должна быть с запасом не менее 30%, иначе он будет перегреваться. А если условия отвода тепла затруднены (например, в корпусе плохая конвекция), то запас должен быть еще больше.

В итоге выбираем резистор мощностью 5 Вт с номинальным сопротивлением 24 Ом.

Для того чтобы оценить эффективность получившегося светотехнического устройства необходимо рассчитать КПД схемы питания:

Image005

Таким образом, КПД подобной схемы питания составляет всего 27%. Такая низкая эффективность обусловлена слишком высоким питающим напряжением 12 вольт, а точнее разницей между U и ULED. Получается, что 8,8 вольт мы вынуждены «гасить» на резисторе за счет бесполезного рассеяния мощности в окружающее пространство. Для повышения КПД требуется либо снизить напряжения питания, либо найти светодиод с большим прямым напряжением. Как вариант можно включить несколько светодиодов последовательно, выполнив подбор таким образом, чтобы суммарное падение было ближе к напряжению питания, но ни в коем случае не превышало его.

Необходимое значение сопротивления для резистора можно и подобрать, если имеется в наличии магазин сопротивлений и амперметр. Включаем магазин и амперметр в цепь последовательно светодиоду (на место предполагаемого резистора), устанавливаем максимальное значение сопротивления и подключаем к источнику напряжения. Далее начинаем уменьшать значение сопротивления до тех пор, пока сила тока не достигнет нужного значения или светодиод нужной яркости (в зависимости от того, что будет являться критерием). Останется только считать значение сопротивления с магазина и выполнить подбор ближайшего номинала.

Ремарка

В данных расчетах мы пренебрегли зависимостью прямого напряжения светодиода от его температуры, однако не следует забывать, что такая зависимость существует и характеризуется параметром «температурный коэффициент напряжения» или сокращенно ТКН. Его значения отличается для разных видов светодиодов, но всегда имеет отрицательное значение. Это значит что при повышении температуры кристалла, прямое напряжение на нем становится меньше. Например, для рассмотренного выше белого светодиода XPE значение ТКН (оно приводится производителем в data sheet) составляет -4 мВ/°С. Следовательно при увеличении температуры кристалла на 25°С, прямое напряжение на нем уменьшится на 0,1 В.

Image006

Рисунок 5

Многие ведущие производители светодиодов имеют на официальных сайтах специальный сервис – «онлайн калькулятор», предназначенный для вычисления параметров светодиодов в различных режимах эксплуатации (в зависимости от температуры, тока и пр.). Этот инструмент значительно облегчает процедуры расчета и экономит время разработчику.

Комментарии